Типы команд
Команды пересылки данных

Это наиболее распространенный тип машинных команд. В таких командах должна содержаться следующая информация:

  • адреса источника и получателя операндов — адреса ячеек памяти, номера регистров процессора или информация о том, что операнды расположены в стеке;
  • длина подлежащих пересылке данных (обычно в байтах или словах), заданная явно или косвенно;
  • способ адресации каждого из операндов, с помощью которого содержимое адресной части команды может быть пересчитано в физический адрес операнда.

Рассматриваемая группа команд обеспечивает передачу информации между процессором и ОП, внутри процессора и между ячейками памяти. Пересылочные операции внутри процессора имеют тип «регистр-регистр». Передачи между процессором и памятью относятся к типу «регистр-память», а пересылки в памяти — к типу «память-память».

 

 

 

 

Команды арифметической и логической обработки

В данную группу входят команды, обеспечивающие арифметическую и логическую обработку информации в различных формах ее представления. Для каждой формы представления чисел в АСК (архитектура системы команд) обычно предусматривается некий стандартный набор операций.

Помимо вычисления результата выполнение арифметических и логических операций сопровождается формированием в АЛУ признаков (флагов), характеризующих этот результат. Наиболее часто фиксируются такие признаки, как: Z (Zero) - нулевой результат; N (Negative) - отрицательный результат; V (oVerflow) — переполнение разрядной сетки; С (Carry) — наличие переноса.

Операции с целыми числами

К стандартному набору операций над целыми числами, представленными в форме с фиксированной запятой, следует отнести:

  • двухместные арифметические операции (операции с двумя операндами):
    • сложение
    • вычитание
    • умножение и деление
  • одноместные арифметические операции (операции с одним операндом ):
    • вычисление абсолютного значения (модуля) операнда
    • изменение знака операнда
  • операции сравнения, обеспечивающие сравнение двух целых чисел и выработку признаков, характеризующих соотношение между сопоставляемыми величинами (=, >, <, <=, >=).

Часто этот перечень дополняют такими операциями, как вычисление остатка от целочисленного деления, сложение с учетом переноса, вычитание с учетом заема,
увеличение значения операнда на единицу (инкремент), уменьшение значения операнда на единицу (декремент).

Отметим, что выполнение арифметических команд может дополнительно сопровождаться перемещением данных из устройства ввода в АЛУ или из АЛУ на устройство вывода.

Операции с числами в форме с плавающей запятой

Для работы с числами, представленными в форме с плавающей запятой, в АСК большинства машин предусмотрены:

  • основные арифметические операции: сложение, вычитание, умножение и деление
  • операции сравнения, обеспечивающие сравнение двух вещественных чисел с выработкой признаков: =,  >, <, <=, >=
  • операции преобразования: формы представления (между фиксированной и плавающей запятой), формата представления (с одинарной и двойной точностью).

Логические операции

Стандартная система команд ВМ содержит команды для выполнения различных логических операций над отдельными битами слов или других адресуемых единиц. Такие команды предназначены для обработки символьных и логических данных. Минимальный набор поддерживаемых логических операций - это «НЕ», «И», «ИЛИ» и сложение по модулю 2.

Операции сдвигов

В дополнение к побитовым логическим операциям, практически во всех АСК предусмотрены команды для реализации операций логического, арифметического и циклического сдвигов.

При логическом сдвиге влево или вправо, сдвигаются все разряды слова. Биты, вышедшие за пределы разрядной сетки, теряются, а освободившиеся позиции заполняются нулями.
При арифметическом сдвиге данные трактуются как целые числа со знаком, причем бит знака не изменяет положения. При сдвиге вправо освободившиеся позиции заполняются значением знакового разряда, а при сдвиге влево - нулями. Арифметические сдвиги позволяют ускорить выполнение некоторых арифметических операций. Так, если числа представлены двоичным дополнительным кодом, то сдвиги влево и вправо эквивалентны соответственно умножению и делению на 2.

При циклическом сдвиге смещаются все разряды слова, причем значение разряда, выходящего за пределы слова, заносится в позицию, освободившуюся с противоположной стороны, то есть потери информации не происходит. Одно из возможных применений циклических сдвигов - это перемещение интересующего бита в крайнюю левую (знаковую) позицию, где он может быть проанализирован как знак числа.

 

 

Команды работы со строками

Для работы со строками в АСК обычно предусматриваются команды, обеспечивающие перемещение, сравнение и поиск строк. В большинстве машин перечислен-: ные операции просто имитируются за счет других команд.

 

 

Команды SIMD 

Название данного типа команд представляет собой аббревиатуру от Single Instruction Multiple Data — буквально «одна инструкция — много данных». Принцип компьютерных вычислений, позволяющий обеспечить параллелизм на уровне данных.

SIMD-компьютеры состоят из одного командного процессора (управляющего модуля), называемого контроллером, и нескольких модулей обработки данных, называемых процессорными элементами. Управляющий модуль принимает, анализирует и выполняет команды. Если в команде встречаются данные, контроллер рассылает на все процессорные элементы команду, и эта команда выполняется на нескольких или на всех процессорных элементах. Каждый процессорный элемент имеет свою собственную память для хранения данных. Одним из преимуществ данной архитектуры считается то, что в этом случае более эффективно реализована логика вычислений. До половины логических инструкций обычного процессора связано с управлением выполнением машинных команд, а остальная их часть относится к работе с внутренней памятью процессора и выполнению арифметических операций. В SIMD компьютере управление выполняется контроллером, а «арифметика» отдана процессорным элементам.

SIMD-процессоры называются также векторными.

Векторный процессор — это процессор, в котором операндами некоторых команд могут выступать упорядоченные массивы данных — векторы. Отличается от скалярных процессоров, которые могут работать только с одним операндом в единицу времени. Абсолютное большинство процессоров являются скалярными или близкими к ним. Векторные процессоры были распространены в сфере научных вычислений, где они являлись основой большинства суперкомпьютеров начиная с 1980-х до 1990-х. Но резкое увеличение производительности и активная разработка новых процессоров привели к вытеснению векторных процессоров со сферы повседневных процессоров.

SIMD-расширения, используемые в процессорах архитектуры x86

  • MMX — Multimedia Extensions. Коммерческое название дополнительного набора инструкций, выполняющих характерные для процессов кодирования/декодирования потоковых аудио/видео данных действия за одну машинную инструкцию. Впервые появился в процессорах Pentium MMX.
  • MMX Extended — расширенный набор инструкций MMX, используемый в процессорах AMD и Cyrix.
  • 3DNow! — расширение набора команд MMX процессоров AMD, начиная с AMD K6-2.
  • 3DNow! Extended — расширение набора команд 3DNow! процессоров AMD, начиная с AMD Athlon.
  • SSE — набор инструкций, разработанный Intel, и впервые представленный в процессорах серии Pentium III как ответ на аналогичный набор инструкций 3DNow! от AMD, который был представлен годом раньше.
  • SSE2 — набор инструкций, разработанный Intel, и впервые представленный в процессорах серии Pentium 4.
  • SSE3 — третья версия SIMD-расширения Intel, потомок SSE, SSE2 и x87. Представлен 2 февраля 2004 года в ядре Prescott процессора Pentium 4.
  • SSSE3 — набор SIMD-инструкций, используемый в процессорах Intel Core 2 Duo.
  • SSE4 — новая версия SIMD-расширения Intel. Анонсирован 27 сентября 2006 года. Представлен в 2007 году процессорах серии Penryn.
  • AVX — анонсированная версия SIMD-расширения Intel, которая будет представлена в 2010 году в процессорах архитектуры Sandy Bridge.

 

 

Команды преобразования 

Команды преобразования осуществляют изменение формата представления данных. Примером может служить преобразование из десятичной системы счисления в двоичную или перевод 8-разрядного кода символа из кодировки ASCII в кодировку EBCDIC, и наоборот.

 

 

Команды ввода/вывода 

Команды этой группы могут быть подразделены на команды управления периферийным устройством (ПУ), проверки его состояния, ввода и вывода.

Команды управления периферийным устройством служат для запуска ПУ и указания ему требуемого действия. Например, накопителю на магнитной ленте может быть предписано на необходимость перемотки ленты или ее продвижения вперед на одну запись. Трактовка подобных инструкций зависит от типа ПУ.

Команды проверки состояния ввода/вывода применяются для тестирования
различных признаков, характеризующих состояние модуля В/ВЫВ и подключенных к нему ПУ. Благодаря этим командам центральный процессор может выяснить, включено ли питание ПУ, завершена ли предыдущая операция ввода/вывода, возникли ли в процессе ввода/вывода какие-либо ошибки и т. п.

Собственно обмен информацией с ПУ обеспечивают команды ввода и вывода. Команды ввода предписывают модулю В/ВЫВ получить элемент данных (байт или слово) от ПУ и поместить его на шину данных, а команды вывода — заставляют модуль В/ВЫВ принять элемент данных с шины данных и переслать его на ПУ.

 

 

Команды управления потоком команд

В английском языке для указания команд безусловного перехода, как правило, используется термин jump, а для команд условного перехода - термин branch, хотя разные поставщики необязательно придерживаются этой терминологии. Например компания Intel использует термин jump и для условных, и для безусловных переходов. Можно выделить четыре основных типа команд для управления потоком команд: условные переходы, безусловные переходы, вызовы процедур и возвраты из процедур.

Для команд перехода адрес перехода должен быть всегда заранее известным. Это не относится к адресам возврата, которые не известны во время компиляции программы и должны определяться во время ее работы. Наиболее простой способ определения адреса перехода заключается в указании его положения относительно текущего значения счетчика команд (с помощью смещения в команде), и такие переходы называются переходами относительно счетчика команд. Преимуществом такого метода адресации является то, что адреса переходов, как правило, расположены недалеко от текущего адреса выполняемой команды и указание относительно текущего значения счетчика команд требует небольшого количества бит в смещении. Кроме того, использование адресации относительно счетчика команд позволяет программе выполняться в любом месте памяти, независимо от того, куда она была загружена. То есть этот метод адресации позволяет автоматически создавать перемещаемые программы.

Реализация возвратов и переходов по косвенному адресу, в которых адрес не известен во время компиляции программы, требует методов адресации, отличных от адресации относительно счетчика команд. В этом случае адрес перехода должен определяться динамически во время работы программы. Наиболее простой способ заключается в указании регистра для хранения адреса возврата, либо для перехода может разрешаться любой метод адресации для вычисления адреса перехода.

Поскольку большинство команд управления потоком команд составляют команды условного перехода, важным вопросом реализации архитектуры является определение условий перехода. Для этого используются три различных подхода. При первом из них в архитектуре процессора предусматривается специальный регистр, разряды которого соответствуют определенным кодам условий. Команды условного перехода проверяют эти условия в процессе своего выполнения. Преимуществом такого подхода является то, что иногда установка кода условия и переход по нему могут быть выполнены без дополнительных потерь времени, что, впрочем, бывает достаточно редко. А недостатками такого подхода является то, что, во-первых, появляются новые состояния машины, за которыми необходимо следить (упрятывать при прерывании и восстанавливать при возврате из него). Во-вторых, и что очень важно для современных высокоскоростных конвейерных архитектур, коды условий ограничивают порядок выполнения команд в потоке, поскольку их основное назначение заключается в передаче кода условия команде условного перехода.

Второй метод заключается в простом использовании произвольного регистра (возможно одного выделенного) общего назначения. В этом случае выполняется проверка состояния этого регистра, в который предварительно помещается результат операции сравнения. Недостатком этого подхода является необходимость выделения в программе для анализа кодов условий специального регистра.

Третий метод предполагает объединение команды сравнения и перехода в одной команде. Недостатком такого подхода является то, что эта объединенная команда довольно сложна для реализации (в одной команде надо указать и тип условия, и константу для сравнения и адрес перехода). Поэтому в таких машинах часто используется компромиссный вариант, когда для некоторых кодов условий используются такие команды, например, для сравнения с нулем, а для более сложных условий используется регистр условий. Часто для анализа результатов команд сравнения для целочисленных операций и для операций с плавающей точкой используется разная техника, хотя это можно объяснить и тем, что в программах количество переходов по условиям выполнения операций с плавающей точкой значительно меньше общего количества переходов, определяемых результатами работы целочисленной арифметики.

Одним из наиболее заметных свойств большинства программ является преобладание в них сравнений на условие равно/неравно и сравнений с нулем. Поэтому в ряде архитектур такие команды выделяются в отдельный поднабор, особенно при использовании команд типа "сравнить и перейти".

Говорят, что переход выполняется, если истинным является условие, которое проверяет команда условного перехода. В этом случае выполняется переход на адрес, заданный командой перехода. Поэтому все команды безусловного перехода всегда выполняемые. По статистике оказывается, что переходы назад по программе в большинстве случаев используются для организации циклов, причем примерно 60% из них составляют выполняемые переходы. В общем случае поведение команд условного перехода зависит от конкретной прикладной программы, однако иногда сказывается и зависимость от компилятора. Такие зависимости от компилятора возникают вследствие изменений потока управления, выполняемого оптимизирующими компиляторами для ускорения выполнения циклов.

Вызовы процедур и возвраты предполагают передачу управления и возможно сохранение некоторого состояния. Как минимум, необходимо уметь где-то сохранять адрес возврата. Некоторые архитектуры предлагают аппаратные механизмы для сохранения состояния регистров, в других случаях предполагается вставка в программу команд самим компилятором. Имеются два основных вида соглашений относительно сохранения состояния регистров. Сохранение вызывающей (caller saving) программой означает, что вызывающая процедура должна сохранять свои регистры, которые она хочет использовать после возврата в нее. Сохранение вызванной процедурой предполагает, что вызванная процедура должна сохранить регистры, которые она собирается использовать. Имеются случаи, когда должно использоваться сохранение вызывающей процедурой для обеспечения доступа к глобальным переменным, которые должны быть доступны для обеих процедур.

Вернутся к заглавию

 
Сайт создан в системе uCoz